Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 626-643

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V$ be a cube of dimension $\nu$, with volume $|V|$. Let ${{|V|}/{N \to\nu}}$, $N\to\infty$. Let ${\mathbf x}=(x_1,\cdots ,x_N)$, $x_i\in V$, $i=1,\cdots ,N$, $$ Q(V,N)=\int_V\dotsi\int_V\exp\{-\beta U({\mathbf x})\}\,dx_1\dots dx_N, $$ where $$ U({\mathbf x})=\sum_{1\leqq i\leqq N}\Phi(|x_i-x_j|). $$ The conditions on $\Phi(y)$, which are sufficient and in some sense necessary for the existence of the finite limit $$ \lim_{N\to\infty}\frac1N\log\frac1{{N!}}Q(V,N) $$ are given.
@article{TVP_1964_9_4_a3,
     author = {R. L. Dobru\v{s}in},
     title = {Investigation of the {Conditions} of the {Asymptotic} {Existence} of the {Configuration} {Integral} of the {Gibbs} {Distribution}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {626--643},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a3/}
}
TY  - JOUR
AU  - R. L. Dobrušin
TI  - Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 626
EP  - 643
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a3/
LA  - ru
ID  - TVP_1964_9_4_a3
ER  - 
%0 Journal Article
%A R. L. Dobrušin
%T Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 626-643
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a3/
%G ru
%F TVP_1964_9_4_a3
R. L. Dobrušin. Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 626-643. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a3/