On Markov Random Sets
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 738-743
Cet article a éte moissonné depuis la source Math-Net.Ru
A Markov random set is a time-homogeneous random closed set on the half-line $t\geqq 0$, satisfying the Markov property of independence between the future and the past when the present is known. Such sets are introduced as a special class of Markov processes. They may be described by a non-increasing right-continuous positive function $g(x)$, $x>0$, integrable near 0 and a non-negative number $\alpha$, determined up to an arbitrary positive constant factor. If $y(t)$ is a continuous strong Markov process, the $t$-set $\{y(t)=\mathrm{const}\}$ is a Markov random set. The most interesting Markov sets are obtained by simple transformations from the Brownien motion process.
@article{TVP_1964_9_4_a17,
author = {N. V. Krylov and A. A. Yu\v{s}kevi\v{c}},
title = {On {Markov} {Random} {Sets}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {738--743},
year = {1964},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a17/}
}
N. V. Krylov; A. A. Yuškevič. On Markov Random Sets. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 738-743. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a17/