Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 710-718
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\dots,\xi_n,\dots$ be independent random positive variables and let ${\mathbf P}\{\xi_k$, $k=1,\dots,n,\dots$ Let us denote
$$
{\mathbf P}\{\xi_1+\dots+\xi_n\}=G_n(t).
$$ Theorem.
$$
\lim_{t\to\infty}\frac{1-G_n(t)}{1-G(t)}=n,\qquad n=1,2,3,\dots,
$$
and only if
$$
\lim_{t\to\infty}\frac{1-G_2(t)}{1-G(t)}=2.
$$
This theorem is useful in some investigations of age-dependent branching processes.
@article{TVP_1964_9_4_a12,
author = {V. P. \v{C}istyakov},
title = {Theorem on {Sums} of {Independent} {Random} {Positive} {Variables} and its {Applications} to {Branching} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {710--718},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1964},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a12/}
}
TY - JOUR AU - V. P. Čistyakov TI - Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1964 SP - 710 EP - 718 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a12/ LA - ru ID - TVP_1964_9_4_a12 ER -
V. P. Čistyakov. Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 710-718. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a12/