On a~Problem in the Theory of Diffusion Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 523-528
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper some Markov processes associated with diffusion processes are discussed, A diffusion process $x_t$ defined on $l$-dimensional Euclidean space $E^l$ is considered only at moments when its trajectory belongs to a given set $S$ (a new time is introduced which changes only when the process is in $S$). If $S$ is a domain with differentiable boundary, the generator $\tilde{\mathfrak{A}}$ of the new process $y_t$ is the same as for $x_t$ at all interior points of $S$. On the boundary of $S$ non-classical boundary conditions are obtained. These boundary conditions are described in Theorem 1. If $S$ is an $(l-1)$-dimensional surface, we obtain on $S$ a discontinuous process of Cauchy type. The generator of this process is investigated in Theorem 2.
			
            
            
            
          
        
      @article{TVP_1964_9_3_a8,
     author = {S. A. Mol\v{c}anov},
     title = {On {a~Problem} in the {Theory} of {Diffusion} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {523--528},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a8/}
}
                      
                      
                    S. A. Molčanov. On a~Problem in the Theory of Diffusion Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 523-528. http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a8/
