On Polynomial Statistics for the Normal and Related Laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 547-550

Voir la notice de l'article provenant de la source Math-Net.Ru

Polynomial statistics are studied for a normal vector and a random vector related to the normal one (this concept is defined by means of differential equations). It is proved that the independence property of polynomial statistics is, roughly speaking, equivalent to the absence of correlation between a finite number of special functions of them. A similar statement holds for the property of equidistribution of polynomial statistics.
@article{TVP_1964_9_3_a13,
     author = {A. A. Singer and Yu. V. Linnik},
     title = {On {Polynomial} {Statistics} for the {Normal} and {Related} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {547--550},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a13/}
}
TY  - JOUR
AU  - A. A. Singer
AU  - Yu. V. Linnik
TI  - On Polynomial Statistics for the Normal and Related Laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 547
EP  - 550
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a13/
LA  - ru
ID  - TVP_1964_9_3_a13
ER  - 
%0 Journal Article
%A A. A. Singer
%A Yu. V. Linnik
%T On Polynomial Statistics for the Normal and Related Laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 547-550
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a13/
%G ru
%F TVP_1964_9_3_a13
A. A. Singer; Yu. V. Linnik. On Polynomial Statistics for the Normal and Related Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 547-550. http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a13/