Central Limit Theorem for the Rotation Group
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 273-282

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives necessary and sufficient conditions in order that a sequence of distributions $\mu_n^*$ in an $n$-dimensional group liave a Gaussian limit. These conditions are analogous to the Lindeberg-Levy conditions on a line.
@article{TVP_1964_9_2_a5,
     author = {K. R. Parthasarathy},
     title = {Central {Limit} {Theorem} for the {Rotation} {Group}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a5/}
}
TY  - JOUR
AU  - K. R. Parthasarathy
TI  - Central Limit Theorem for the Rotation Group
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 273
EP  - 282
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a5/
LA  - en
ID  - TVP_1964_9_2_a5
ER  - 
%0 Journal Article
%A K. R. Parthasarathy
%T Central Limit Theorem for the Rotation Group
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 273-282
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a5/
%G en
%F TVP_1964_9_2_a5
K. R. Parthasarathy. Central Limit Theorem for the Rotation Group. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a5/