Some Characteristic Properties of Stochastic Gaussian Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 390-394
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper spherically invariant processes are defined. The characteristic function of these processes $(\xi(t))$ in accordance with Shonberg's theorem [1] is of the form $$ \chi(\eta)\equiv{\mathbf M}e^{i\eta}=f({\mathbf D}\eta)=\int_0^\infty e^{-\gamma{\mathbf D}\eta}\,G(d\gamma), $$ $\eta=\int\xi(t)\eta(t)\,dt$, where $G$ is some measure on $[0,\infty)$. Only if the process is spherically invariant, then 1) every extrapolation problem has a linear solution, 2) every functional transformation leaving the correlation function of the process invariant retains its measure in the space of realizations.If a spherically invariant process is stationary and ergodic, then it is Gaussian.
@article{TVP_1964_9_2_a21,
author = {A. M. Ver\v{s}ik},
title = {Some {Characteristic} {Properties} of {Stochastic} {Gaussian} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {390--394},
year = {1964},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a21/}
}
A. M. Veršik. Some Characteristic Properties of Stochastic Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 390-394. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a21/