On the Asymptotic Behaviour of the Estimate of the Spectral Function for a Stationary Gaussian Process
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 386-390
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi _n$, $n=0$, $\pm 1,\pm 2,\dots$, be a real stationary Gaussian sequence with an absolutely continuous spectral function $F(\lambda)$, and let $F_N (\lambda)$ be the sample spectral function.We assume that $F(\lambda)$ has no interval of constancy, and $f(\lambda)=F'(\lambda)\in L_2[0,\pi]$. Then the sequence of measures $P_N$ generated by the process $\zeta_N(\lambda)=\sqrt N[F_n(\lambda)-F(\lambda)]$ converges weakly to the measure which is generated by the Gaussian process $\zeta(\lambda)$ with ${\mathbf M}\zeta(\lambda)=0$ and $$ {\mathbf M}\zeta(\lambda)\zeta(\mu)=2\pi\int_0^{\min(\lambda\mu)}f^2(x)\,dx. $$ A similar result holds for the process $\xi_t$ with continuous time, $0\leqslant t<+\infty$.
@article{TVP_1964_9_2_a20,
author = {T. L. Malevi\v{c}},
title = {On the {Asymptotic} {Behaviour} of the {Estimate} of the {Spectral} {Function} for {a~Stationary} {Gaussian} {Process}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {386--390},
year = {1964},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a20/}
}
TY - JOUR AU - T. L. Malevič TI - On the Asymptotic Behaviour of the Estimate of the Spectral Function for a Stationary Gaussian Process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1964 SP - 386 EP - 390 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a20/ LA - ru ID - TVP_1964_9_2_a20 ER -
T. L. Malevič. On the Asymptotic Behaviour of the Estimate of the Spectral Function for a Stationary Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 386-390. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a20/