The Cauchy Problem for Quasilinear Parabolic Equations in the Degerate Case
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 378-382
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we consider the differential properties of the solution to the Cauchy problem for the quasilinear parabolic equation
begin{equation}
\qquad\frac{\partial v}{\partial t}=\frac12\sum_{i,j=1}^n c_{ij}(t,x,v)\frac{\partial^2v}{\partial x_i\partial x_i}+\sum_{i=1}^na_i(t,x,v)\frac{\partial v}{\partial x_i},
\tag{1}
\end{equation}
where $c_{ij}=\sum_{k=1}^nb_{ik}(t,x,v)b_{jk}(t,x,v)$. Let class $C_T^{m,\gamma}$ be a class of continuous functions, which has bounded space derivatives up to the $m$-th order, and its $m$-th derivative is Hölder continuous with Hölder constant $\gamma$. It is proved in this paper that if
$$
\{b(t,x,v),a(t,x,v),\psi (x)\}\in C_T^{m,\gamma},\qquad m\geqq 2, 
$$
then $v\in C_{t_0}^{m,\gamma}$, where $t_0>0$ depends only on the constants of class $C_T^{m,\gamma}$. If $n=1$, $a(t,x,v)\equiv 0$, then the above assertion will follow for all $t\in [0,T]$ and $x\in(-\infty,\infty)$. It is noted that $b(t,x,v)$ may be any degenerate matrix. These assertions are proved by the method of diffusion processes.
			
            
            
            
          
        
      @article{TVP_1964_9_2_a18,
     author = {Yu. N. Blagove\v{s}\v{c}enskiǐ},
     title = {The {Cauchy} {Problem} for {Quasilinear} {Parabolic} {Equations} in the {Degerate} {Case}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {378--382},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a18/}
}
                      
                      
                    TY - JOUR AU - Yu. N. Blagoveščenskiǐ TI - The Cauchy Problem for Quasilinear Parabolic Equations in the Degerate Case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1964 SP - 378 EP - 382 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a18/ LA - ru ID - TVP_1964_9_2_a18 ER -
Yu. N. Blagoveščenskiǐ. The Cauchy Problem for Quasilinear Parabolic Equations in the Degerate Case. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 378-382. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a18/
