An Estimate of the Remainder Term in a~Limit Theorem for Recurrent Events
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 327-331

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{E}$ be a recurrent event, $a_n$ be the probability that $\mathcal{E}$ occurs at the $n$-th trial and $p_n$ be the probability that $\mathcal{E}$ occurs for the first time at the $n$-th trial. A. N. Kolmogorov [2] proved that as $n\to\infty$ $$ B_n=a_n-\frac{1}{\mu}\to 0, $$ where $\mu=\sum_{k\geqq 1}kp_n$ and then W. Feller [3] estimated the remainder term $B_n$ under some addition-conditions. In this note a more exact estimate of $B_n$ under more general conditions as compared to Feller's is given.
@article{TVP_1964_9_2_a10,
     author = {A. O. Gel'fond},
     title = {An {Estimate} of the {Remainder} {Term} in {a~Limit} {Theorem} for {Recurrent} {Events}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {327--331},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a10/}
}
TY  - JOUR
AU  - A. O. Gel'fond
TI  - An Estimate of the Remainder Term in a~Limit Theorem for Recurrent Events
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 327
EP  - 331
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a10/
LA  - ru
ID  - TVP_1964_9_2_a10
ER  - 
%0 Journal Article
%A A. O. Gel'fond
%T An Estimate of the Remainder Term in a~Limit Theorem for Recurrent Events
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 327-331
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a10/
%G ru
%F TVP_1964_9_2_a10
A. O. Gel'fond. An Estimate of the Remainder Term in a~Limit Theorem for Recurrent Events. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 327-331. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a10/