Extension of Stationary Stochastic Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 72-78
Voir la notice de l'article provenant de la source Math-Net.Ru
A process $\xi _\lambda (t)$ of the form (2) is observed, where $S(t-\tau )$ is a signal of a well-known form, which depends on an unknown parameter $\tau$; $\nu(t)$ is Gaussian noise with a spectral density as in (la). The problem is to detect a class of estimations of the parameter $\tau$, whose exactness does not vary when the process $\xi _\lambda (t)$ changes somewhat. A class of processes $\tilde{\xi}_\lambda (t)$ approximating the process $\xi _\lambda(t)$ is determined by means of relation (3). A class of estimations $\tilde\tau$, whose exactness is the same for all processes $\tilde\xi _\lambda$ approximating the process $\xi _\lambda$, is determined from (4). An optimum estimation for this class is found.
@article{TVP_1964_9_1_a5,
author = {K. R. Parthasarathy and S. R. S. Varadhan},
title = {Extension of {Stationary} {Stochastic} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {72--78},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1964},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a5/}
}
K. R. Parthasarathy; S. R. S. Varadhan. Extension of Stationary Stochastic Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 72-78. http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a5/