A~Separating Partition for a~Finite Family of Measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 165-167
Voir la notice de l'article provenant de la source Math-Net.Ru
If there is a space with a family of $n$ finitely additive functions $\{p_i,\,i=1,2,\dots,n\}$, a finite partition of the space with no more than $n$ sets exists on which these functions are different from each other.
@article{TVP_1964_9_1_a21,
author = {S. M. Vi\v{s}ik and A. A. Cobrinskiǐ and A. L. Rozenthal'},
title = {A~Separating {Partition} for {a~Finite} {Family} of {Measures}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {165--167},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1964},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a21/}
}
TY - JOUR AU - S. M. Višik AU - A. A. Cobrinskiǐ AU - A. L. Rozenthal' TI - A~Separating Partition for a~Finite Family of Measures JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1964 SP - 165 EP - 167 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a21/ LA - ru ID - TVP_1964_9_1_a21 ER -
S. M. Višik; A. A. Cobrinskiǐ; A. L. Rozenthal'. A~Separating Partition for a~Finite Family of Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 165-167. http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a21/