Topology in a~Group and Convergence of Distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 122-125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The purpose of this paper is to prove the following result. Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be an arbitrary sequence of independent random variables on a locally compact group $G$. We construct the compositions
$$
\xi_n=\xi_1\xi_2\dots\xi_n.
$$ 
If elements $a_n\in G$ can be found so that the sequence of normalized compositions 
$$
\eta_n=\zeta_n a_n 
$$
as a limiting distribution, then the group $G$ is compact.
			
            
            
            
          
        
      @article{TVP_1964_9_1_a12,
     author = {B. M. Kloss},
     title = {Topology in {a~Group} and {Convergence} of {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {122--125},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a12/}
}
                      
                      
                    B. M. Kloss. Topology in a~Group and Convergence of Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 122-125. http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a12/
