Topology in a~Group and Convergence of Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 122-125

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to prove the following result. Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be an arbitrary sequence of independent random variables on a locally compact group $G$. We construct the compositions $$ \xi_n=\xi_1\xi_2\dots\xi_n. $$ If elements $a_n\in G$ can be found so that the sequence of normalized compositions $$ \eta_n=\zeta_n a_n $$ as a limiting distribution, then the group $G$ is compact.
@article{TVP_1964_9_1_a12,
     author = {B. M. Kloss},
     title = {Topology in {a~Group} and {Convergence} of {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {122--125},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a12/}
}
TY  - JOUR
AU  - B. M. Kloss
TI  - Topology in a~Group and Convergence of Distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 122
EP  - 125
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a12/
LA  - ru
ID  - TVP_1964_9_1_a12
ER  - 
%0 Journal Article
%A B. M. Kloss
%T Topology in a~Group and Convergence of Distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 122-125
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a12/
%G ru
%F TVP_1964_9_1_a12
B. M. Kloss. Topology in a~Group and Convergence of Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 122-125. http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a12/