On the Convergence to Normality of Quadratic Forms in Independent Variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 113-118
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sufficient conditions are obtained for the distribution of a quadratic form of $n$ independent variables to converge to the normal distribution as $n$ increases. Particular attention is given to forms which are encountered in the theory of stationary random processes. The results of the paper are formulated in Theorems 1 and 2 of Section 4; a short description of the methods is given in Section 2.
			
            
            
            
          
        
      @article{TVP_1964_9_1_a10,
     author = {P. Whittle},
     title = {On the {Convergence} to {Normality} of {Quadratic} {Forms} in {Independent} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {113--118},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1964},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a10/}
}
                      
                      
                    P. Whittle. On the Convergence to Normality of Quadratic Forms in Independent Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 113-118. http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a10/
