Markov Measures and Markov Extensions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 4, pp. 451-462
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let ${\mathfrak{K}}$ be a complex with the set of vertices $M$ and $A$, $B$ and $R$ three subsets of $M$. $R$ is said to be separating $A$ and $B$ in ${\mathfrak{K}}$ (notation: $(A\mathop |\limits_R B)_\mathfrak{K}$) if any $a \in A$ and $b\in B$ are not connected in $\mathfrak{K}\setminus\cup_{r\in R}O_\mathfrak{K}r$ ($O_\mathfrak{K}r$ is the star of $r$ in $\mathfrak{K}$).
Let $S_a,a\in M$, be a finite set and $S_A=\prod_{a\in A}S_a,A\subset M$. A measure $\mu _M$ on $S_M$ is said to be Markov relative to $\mathfrak{K}$ if for any separation $(A\mathop |\limits_R B)_\mathfrak{K}$ and $x_R\in S_R$ the inequality, $\mu _M(x_R)\ne0$ implies $$\mu _M\left(X_A\times X_B|x_R\right) \ne\mu_M\left(X_A|x_R\right)\mu_M\left(X_B|x_R\right)$$ for arbitrary $X_A\subset S_A$ and $X_B\subset S_B$.
Theorem. If the complex $\mathfrak{K}$ is regular, any consistent family of measures $\mu_\mathfrak{K}=\left\{ {\mu _K}\right\}_{K\in\mathfrak{K}}$ on $S_\mathfrak{K}=\left\{{S_K}\right\}_{K\in\mathfrak{K}}$ has a unique extension which is Markov relative to $\mathfrak{K}$.
			
            
            
            
          
        
      @article{TVP_1963_8_4_a5,
     author = {N. N. Vorob'ev},
     title = {Markov {Measures} and {Markov} {Extensions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {451--462},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a5/}
}
                      
                      
                    N. N. Vorob'ev. Markov Measures and Markov Extensions. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 4, pp. 451-462. http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a5/
