On a Topologization of the set of Interior Consistent Families of Measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 4, pp. 444-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A consistent family of measures on a finite set is said to be interior if all its measures are interior. The theorem of the note [1] is extended to the set of all interior consistent families of measures.
@article{TVP_1963_8_4_a4,
     author = {N. N. Vorob'ev},
     title = {On a {Topologization} of the set of {Interior} {Consistent} {Families} of {Measures}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {444--451},
     year = {1963},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a4/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
TI  - On a Topologization of the set of Interior Consistent Families of Measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 444
EP  - 451
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a4/
LA  - ru
ID  - TVP_1963_8_4_a4
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%T On a Topologization of the set of Interior Consistent Families of Measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 444-451
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a4/
%G ru
%F TVP_1963_8_4_a4
N. N. Vorob'ev. On a Topologization of the set of Interior Consistent Families of Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 4, pp. 444-451. http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a4/