On a Topologization of the set of Interior Consistent Families of Measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 4, pp. 444-451
Cet article a éte moissonné depuis la source Math-Net.Ru
A consistent family of measures on a finite set is said to be interior if all its measures are interior. The theorem of the note [1] is extended to the set of all interior consistent families of measures.
@article{TVP_1963_8_4_a4,
author = {N. N. Vorob'ev},
title = {On a {Topologization} of the set of {Interior} {Consistent} {Families} of {Measures}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {444--451},
year = {1963},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a4/}
}
N. N. Vorob'ev. On a Topologization of the set of Interior Consistent Families of Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 4, pp. 444-451. http://geodesic.mathdoc.fr/item/TVP_1963_8_4_a4/