A~Problem on Searching
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 196-201

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the point with probability $p_k > 0,k = 1,2, \cdots ,n$, be located in a cell with the number $k;\sum _{k = 1}^n p_k = 1$. Only one cell is inspected per unit of time. If the point lies in the cell being inspectted, it can be discovered with a probability $p > 0$. The results of such investigations are independent. Let us denote by $\alpha_t,1\leq\alpha_t\leq n$, the number of the cell investigated at time $t$ if the point was not discovered up to the time $t-1$. Let $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_t,\cdots)$ be the procedure of searching and $\tau_\alpha$ the time required for discovering the point. In this paper a procedure of searching $\alpha^*$ is determined so that $$ {\mathbf M}\tau _{\alpha^*}=\mathop {\inf }\limits_\alpha{\mathbf M}\tau _a . $$
@article{TVP_1963_8_2_a7,
     author = {O. V. Staroverov},
     title = {A~Problem on {Searching}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {196--201},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a7/}
}
TY  - JOUR
AU  - O. V. Staroverov
TI  - A~Problem on Searching
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 196
EP  - 201
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a7/
LA  - ru
ID  - TVP_1963_8_2_a7
ER  - 
%0 Journal Article
%A O. V. Staroverov
%T A~Problem on Searching
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 196-201
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a7/
%G ru
%F TVP_1963_8_2_a7
O. V. Staroverov. A~Problem on Searching. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 196-201. http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a7/