A~Problem on Searching
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 196-201
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let the point with probability $p_k > 0,k = 1,2, \cdots ,n$, be located in a cell with the number $k;\sum _{k = 1}^n p_k = 1$. Only one cell is inspected per unit of time. If the point lies in the cell being inspectted, it can be discovered with a probability $p > 0$.
The results of such investigations are independent. Let us denote by $\alpha_t,1\leq\alpha_t\leq n$, the number of the cell investigated at time $t$ if the point was not discovered up to the time $t-1$. Let $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_t,\cdots)$ be the procedure of searching and $\tau_\alpha$ the time required for discovering the point. In this paper a procedure of searching $\alpha^*$ is determined so that 
$$
{\mathbf M}\tau _{\alpha^*}=\mathop {\inf }\limits_\alpha{\mathbf M}\tau _a . 
$$
            
            
            
          
        
      @article{TVP_1963_8_2_a7,
     author = {O. V. Staroverov},
     title = {A~Problem on {Searching}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {196--201},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a7/}
}
                      
                      
                    O. V. Staroverov. A~Problem on Searching. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 196-201. http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a7/
