Periodically and Almost Periodically Correlated Random Processes with a Continuous Parameter
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 184-189
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The random process $x(t),\infty$, with ${\mathbf M}x(t)={\mathbf M}x(t+t_0),\quad{\mathbf M}x(s)\overline{x(t)}={\mathbf M}x(s+t_0)\overline{x(t+t_0)}$ for fixed ${t_0}$ is called periodically correlated. Almost periodically correlated processes are defined by analogy.
The property of positive definiteness of covariation and the harmonizability of these processes are considered.
			
            
            
            
          
        
      @article{TVP_1963_8_2_a4,
     author = {E. G. Glady\v{s}ev},
     title = {Periodically and {Almost} {Periodically} {Correlated} {Random} {Processes} with a {Continuous} {Parameter}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {184--189},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a4/}
}
                      
                      
                    TY - JOUR AU - E. G. Gladyšev TI - Periodically and Almost Periodically Correlated Random Processes with a Continuous Parameter JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1963 SP - 184 EP - 189 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a4/ LA - ru ID - TVP_1963_8_2_a4 ER -
E. G. Gladyšev. Periodically and Almost Periodically Correlated Random Processes with a Continuous Parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 184-189. http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a4/
