Analytical Properties of a Generating Function for a Number of Renewals
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 108-112
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{t_i\}$ be a renewal process, $N_t=\max(n:t_n$. Some analytic properties, such as analyticy within the circle $|z|{1/r}$, of the function $\Pi _t (z)=\sum _{k=0}^\infty z^k P\{N_t=k\}$ and others are proved.
			
            
            
            
          
        
      @article{TVP_1963_8_1_a9,
     author = {Yu. K. Belyaev and V. M. Maksimov},
     title = {Analytical {Properties} of a {Generating} {Function} for a {Number} of {Renewals}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {108--112},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a9/}
}
                      
                      
                    TY - JOUR AU - Yu. K. Belyaev AU - V. M. Maksimov TI - Analytical Properties of a Generating Function for a Number of Renewals JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1963 SP - 108 EP - 112 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a9/ LA - ru ID - TVP_1963_8_1_a9 ER -
Yu. K. Belyaev; V. M. Maksimov. Analytical Properties of a Generating Function for a Number of Renewals. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 108-112. http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a9/
