Diffusion Processes with Reflection and a Third Boundary Value Problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 80-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a Markov diffusion process with reflection on the boundary of a differentiable manifold is constructed. This construction enables us to investigate the boundary value problem: $\sum\limits_{i,j=1}^n{a_{ij}(x)\frac{{\partial^2 u}}{{\partial x^i\partial x^j}}+}\sum\limits_{i=1}^n{b_i(x)}\frac{{\partial u}}{{\partial x^i}}=f(x),\quad\left.{\frac{{\partial u}}{{\partial l}}}\right|_\Gamma=0,$ using probability methods. Neumann’s problem is a special case of this problem (when $l$ is conformal to the boundary).
@article{TVP_1963_8_1_a5,
     author = {M. I. Freidlin},
     title = {Diffusion {Processes} with {Reflection} and a {Third} {Boundary} {Value} {Problem}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {80--87},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a5/}
}
TY  - JOUR
AU  - M. I. Freidlin
TI  - Diffusion Processes with Reflection and a Third Boundary Value Problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 80
EP  - 87
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a5/
LA  - ru
ID  - TVP_1963_8_1_a5
ER  - 
%0 Journal Article
%A M. I. Freidlin
%T Diffusion Processes with Reflection and a Third Boundary Value Problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 80-87
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a5/
%G ru
%F TVP_1963_8_1_a5
M. I. Freidlin. Diffusion Processes with Reflection and a Third Boundary Value Problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 80-87. http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a5/