Principle of Averaging for Parabolic and Elliptic Differential Equations and for Markov Processes with Small Diffusion
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 3-25

Voir la notice de l'article provenant de la source Math-Net.Ru

In §§ 1–3 of the present paper we prove N. N. Bogolyubov's principle of averaging [1] for parabolic equations (theorems 1,2.2'). Lemma 2 is of most importance for the proof. Kolmogorov's theorem ([14], lemma 2.2) is essentially used for the proof of this lemma. In § 4 theorem 1 is used for studying more general parabolic and elliptic equations. The theorem of the convergence of an invariant measure of a Markov process on a torus to an invariant measure of the flow on a torus (Theorem 3) is proved in § 5.
@article{TVP_1963_8_1_a0,
     author = {R. Z. Khas'minskii},
     title = {Principle of {Averaging} for {Parabolic} and {Elliptic} {Differential} {Equations} and for {Markov} {Processes} with {Small} {Diffusion}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a0/}
}
TY  - JOUR
AU  - R. Z. Khas'minskii
TI  - Principle of Averaging for Parabolic and Elliptic Differential Equations and for Markov Processes with Small Diffusion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 3
EP  - 25
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a0/
LA  - ru
ID  - TVP_1963_8_1_a0
ER  - 
%0 Journal Article
%A R. Z. Khas'minskii
%T Principle of Averaging for Parabolic and Elliptic Differential Equations and for Markov Processes with Small Diffusion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 3-25
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a0/
%G ru
%F TVP_1963_8_1_a0
R. Z. Khas'minskii. Principle of Averaging for Parabolic and Elliptic Differential Equations and for Markov Processes with Small Diffusion. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a0/