On Convergence in the Mean for Densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 4, pp. 433-437

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequence of normed sums $\zeta_n=(\xi _1+\cdots+\xi _n)/\sqrt n$ is considered ( $\xi _1,\dots,\xi_n$ are equally distributed random variables, $\mathbf M\xi _i=0,\mathbf M\xi_i^2=1$). Let $\varphi (x)$ denote the density of the normal distribution with parameters $(0,1)$, $p_n (x)$ the density of the absolutely continuous component of the distribution of the sum $\zeta _n$. The main results of the paper are as follows: if the condition (A) is satisfied and the components $\xi _i$ have finite third moments $\alpha$, then $$C_n=\int|p_n(x)-\varphi(x)|\,dx=\frac{| \alpha|}{\sqrt n}\lambda+o\left(\frac1{\sqrt n}\right),$$ where $\lambda$ is a constant, whose value is given in Theorem 1. The other theorems refer to the case when the moment $\alpha$ does not exist.
@article{TVP_1962_7_4_a3,
     author = {S. Kh. Sirazhdinov and M. Mamatov},
     title = {On {Convergence} in the {Mean} for {Densities}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {433--437},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a3/}
}
TY  - JOUR
AU  - S. Kh. Sirazhdinov
AU  - M. Mamatov
TI  - On Convergence in the Mean for Densities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 433
EP  - 437
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a3/
LA  - ru
ID  - TVP_1962_7_4_a3
ER  - 
%0 Journal Article
%A S. Kh. Sirazhdinov
%A M. Mamatov
%T On Convergence in the Mean for Densities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 433-437
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a3/
%G ru
%F TVP_1962_7_4_a3
S. Kh. Sirazhdinov; M. Mamatov. On Convergence in the Mean for Densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 4, pp. 433-437. http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a3/