On Convergence in the Mean for Densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 4, pp. 433-437
Voir la notice de l'article provenant de la source Math-Net.Ru
A sequence of normed sums $\zeta_n=(\xi _1+\cdots+\xi _n)/\sqrt n$ is considered ( $\xi _1,\dots,\xi_n$ are equally distributed random variables, $\mathbf M\xi _i=0,\mathbf M\xi_i^2=1$). Let $\varphi (x)$ denote the density of the normal distribution with parameters $(0,1)$, $p_n (x)$ the density of the absolutely continuous component of the distribution of the sum $\zeta _n$. The main results of the paper are as follows: if the condition (A) is satisfied and the components $\xi _i$ have finite third moments $\alpha$, then $$C_n=\int|p_n(x)-\varphi(x)|\,dx=\frac{| \alpha|}{\sqrt n}\lambda+o\left(\frac1{\sqrt n}\right),$$ where $\lambda$ is a constant, whose value is given in Theorem 1.
The other theorems refer to the case when the moment $\alpha$ does not exist.
@article{TVP_1962_7_4_a3,
author = {S. Kh. Sirazhdinov and M. Mamatov},
title = {On {Convergence} in the {Mean} for {Densities}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {433--437},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1962},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a3/}
}
S. Kh. Sirazhdinov; M. Mamatov. On Convergence in the Mean for Densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 4, pp. 433-437. http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a3/