Some Limit Theorems for Stationary Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 4, pp. 361-392
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper stationary stochastic processes in the strong sense $\{x_j\}$ are investigated, which satisfy the condition
$$
|\mathbf P(AB)-\mathbf P(A)\mathbf P(B)|\leq\varphi(n)\mathbf P(A),\quad\varphi(n)\downarrow 0,
$$
for every $A\in\mathfrak{M}_{-\infty}^0,B\in\mathfrak{M}_n^\infty$, or the “strong mixing condition”
$$
\sup_{A\in\mathfrak{M}_{-\infty}^0,B\in\mathfrak{M}_n^\infty}|\mathbf P(AB)-\mathbf P(A)\mathbf P(B)|\alpha(n)\downarrow0,
$$
where $\mathfrak{M}_a^b$ is a $\sigma$-algebra generated by the events
$$
\{(x_{i_1},x_{i_2},\dots,x_{i_k})\in\mathbf E\},\qquad a \leq i_1\dots\leq b,
$$
$\mathbf E$ being a $k$-dimensional Borel set.
Some limit theorems for the sums of the type $$\frac{x_1+\cdots+x_n}{B_n}-A_n\quad{\text{or}}\quad\frac{f_1+ \cdots+f_n}{B_n }-A_n$$ are established. Here $f_j=T^j f$, and the random variable $f$ is measurable with respect to $\mathfrak{M}_{-\infty}^\infty $.
@article{TVP_1962_7_4_a0,
author = {I. A. Ibragimov},
title = {Some {Limit} {Theorems} for {Stationary} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {361--392},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1962},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a0/}
}
I. A. Ibragimov. Some Limit Theorems for Stationary Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 4, pp. 361-392. http://geodesic.mathdoc.fr/item/TVP_1962_7_4_a0/