The Average Length of a Minimum Redundancy Binary Code for Probabilities of
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 3, pp. 342-343

Voir la notice de l'article provenant de la source Math-Net.Ru

The average length of a Huffman binary code [1] is obtained for the case when $p_1\leq p_{n-1}+p_n$.
@article{TVP_1962_7_3_a7,
     author = {S. S. Kislitsyn},
     title = {The {Average} {Length} of a {Minimum} {Redundancy} {Binary} {Code} for {Probabilities} of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {342--343},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_3_a7/}
}
TY  - JOUR
AU  - S. S. Kislitsyn
TI  - The Average Length of a Minimum Redundancy Binary Code for Probabilities of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 342
EP  - 343
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_3_a7/
LA  - ru
ID  - TVP_1962_7_3_a7
ER  - 
%0 Journal Article
%A S. S. Kislitsyn
%T The Average Length of a Minimum Redundancy Binary Code for Probabilities of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 342-343
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_3_a7/
%G ru
%F TVP_1962_7_3_a7
S. S. Kislitsyn. The Average Length of a Minimum Redundancy Binary Code for Probabilities of. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 3, pp. 342-343. http://geodesic.mathdoc.fr/item/TVP_1962_7_3_a7/