The Average Length of a Minimum Redundancy Binary Code for Probabilities of 
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 3, pp. 342-343
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The average length of a Huffman binary code [1] is obtained for the case when $p_1\leq p_{n-1}+p_n$.
			
            
            
            
          
        
      @article{TVP_1962_7_3_a7,
     author = {S. S. Kislitsyn},
     title = {The {Average} {Length} of a {Minimum} {Redundancy} {Binary} {Code} for {Probabilities} of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {342--343},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_3_a7/}
}
                      
                      
                    S. S. Kislitsyn. The Average Length of a Minimum Redundancy Binary Code for Probabilities of. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 3, pp. 342-343. http://geodesic.mathdoc.fr/item/TVP_1962_7_3_a7/
