Optimal Binary Codes for Small Rates of Transmission of Information
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 208-213

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us suppose that the input alphabet of a channel consists of two symbols. We consider the optimal method of transmission of $N$ code entries through the channel where the length of transmission is for $n\to\infty$ and $N=\operatorname{const}$. Formula (21) gives an asymptotic expression for the optimal probability of error if the transition matrix of the channel is symmetrical in a certain sense.
@article{TVP_1962_7_2_a8,
     author = {R. L. Dobru\v{s}in},
     title = {Optimal {Binary} {Codes} for {Small} {Rates} of {Transmission} of {Information}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {208--213},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a8/}
}
TY  - JOUR
AU  - R. L. Dobrušin
TI  - Optimal Binary Codes for Small Rates of Transmission of Information
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 208
EP  - 213
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a8/
LA  - ru
ID  - TVP_1962_7_2_a8
ER  - 
%0 Journal Article
%A R. L. Dobrušin
%T Optimal Binary Codes for Small Rates of Transmission of Information
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 208-213
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a8/
%G ru
%F TVP_1962_7_2_a8
R. L. Dobrušin. Optimal Binary Codes for Small Rates of Transmission of Information. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 208-213. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a8/