Optimal Binary Codes for Small Rates of Transmission of Information
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 208-213
Voir la notice de l'article provenant de la source Math-Net.Ru
Let us suppose that the input alphabet of a channel consists of two symbols. We consider the optimal method of transmission of $N$ code entries through the channel where the length of transmission is for $n\to\infty$ and $N=\operatorname{const}$. Formula (21) gives an asymptotic expression for the optimal probability of error if the transition matrix of the channel is symmetrical in a certain sense.
@article{TVP_1962_7_2_a8,
author = {R. L. Dobru\v{s}in},
title = {Optimal {Binary} {Codes} for {Small} {Rates} of {Transmission} of {Information}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {208--213},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {1962},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a8/}
}
R. L. Dobrušin. Optimal Binary Codes for Small Rates of Transmission of Information. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 208-213. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a8/