On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 204-208

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x(t)$ be a Gaussian stationary process $\mathfrak{M}_{+0}=\bigcap _{t>0}\mathfrak{M}_t$, where $\mathfrak{M}_t$ is the $\sigma $-algebra generated by $x(s),0\leq s\leq t$. It is proved that if the spectral density $f(\lambda)$ of the process satisfies the condition $f(\lambda)\geq{1}/{\lambda^p}$ for all $|\lambda|>\lambda_0$ and some $p>0$, the $\sigma $-algebra $\mathfrak{M}_{+0}$ is generated by $x(0),{dx(0)}/{dt},\dots,{dx^{(k)}{(0)}}/{dt^k}$, where $k$ is the order of the derivative the sample functions admit.
@article{TVP_1962_7_2_a7,
     author = {V. N. Tutubalin and M. I. Freidlin},
     title = {On the {Structure} of the {Infinitesimal} $\sigma${-Algebra} of a {Gaussian} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {204--208},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a7/}
}
TY  - JOUR
AU  - V. N. Tutubalin
AU  - M. I. Freidlin
TI  - On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 204
EP  - 208
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a7/
LA  - ru
ID  - TVP_1962_7_2_a7
ER  - 
%0 Journal Article
%A V. N. Tutubalin
%A M. I. Freidlin
%T On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 204-208
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a7/
%G ru
%F TVP_1962_7_2_a7
V. N. Tutubalin; M. I. Freidlin. On the Structure of the Infinitesimal $\sigma$-Algebra of a Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 204-208. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a7/