Diffusion Processes Depending on a Small Parameter
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 135-152

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a random disturbance of a system of ordinary differential equations which can be written in vector form as follows: $$ x(t)=a({t,x}),\, x(0)=x_0,\quad t\in[{0,t_0} ],\,t\infty.$$
@article{TVP_1962_7_2_a1,
     author = {Yu. N. Blagove\v{s}\v{c}enskiǐ},
     title = {Diffusion {Processes} {Depending} on a {Small} {Parameter}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {135--152},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a1/}
}
TY  - JOUR
AU  - Yu. N. Blagoveščenskiǐ
TI  - Diffusion Processes Depending on a Small Parameter
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 135
EP  - 152
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a1/
LA  - ru
ID  - TVP_1962_7_2_a1
ER  - 
%0 Journal Article
%A Yu. N. Blagoveščenskiǐ
%T Diffusion Processes Depending on a Small Parameter
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 135-152
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a1/
%G ru
%F TVP_1962_7_2_a1
Yu. N. Blagoveščenskiǐ. Diffusion Processes Depending on a Small Parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 135-152. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a1/