Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 121-134
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are found which are necessary for uniform normal convergence in the zones
$[0,n^\alpha\rho(n)],[- n^\alpha\rho(n)]$ for values of $\alpha \in[\frac{1}{6},\frac{1}{2}]$, and sufficientin the zones $[0,{n^\alpha}/{\rho}(n)],[{-n^\alpha}/{\rho}(n),0]$. The method is a combination of H. Cramer’s method and of the arguments of Part I of this paper.
@article{TVP_1962_7_2_a0,
author = {Yu. V. Linnik},
title = {Limit {Theorems} for {Sums} of {Independent} {Variables} {Taking} into {Account} {Large} {Deviations.~III}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {121--134},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {1962},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/}
}
TY - JOUR AU - Yu. V. Linnik TI - Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1962 SP - 121 EP - 134 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/ LA - ru ID - TVP_1962_7_2_a0 ER -
Yu. V. Linnik. Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 121-134. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/