Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 121-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found which are necessary for uniform normal convergence in the zones $[0,n^\alpha\rho(n)],[- n^\alpha\rho(n)]$ for values of $\alpha \in[\frac{1}{6},\frac{1}{2}]$, and sufficientin the zones $[0,{n^\alpha}/{\rho}(n)],[{-n^\alpha}/{\rho}(n),0]$. The method is a combination of H. Cramer’s method and of the arguments of Part I of this paper.
@article{TVP_1962_7_2_a0,
     author = {Yu. V. Linnik},
     title = {Limit {Theorems} for {Sums} of {Independent} {Variables} {Taking} into {Account} {Large} {Deviations.~III}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/}
}
TY  - JOUR
AU  - Yu. V. Linnik
TI  - Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 121
EP  - 134
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/
LA  - ru
ID  - TVP_1962_7_2_a0
ER  - 
%0 Journal Article
%A Yu. V. Linnik
%T Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 121-134
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/
%G ru
%F TVP_1962_7_2_a0
Yu. V. Linnik. Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~III. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 121-134. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a0/