Martingales on Metric Spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 1, pp. 82-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{x_n,n=1,2,\dots\}$ be a random sequence with values in a compact metric space $X$. Following Doss, we define the conditional mathematical expectation of $x_n$ with respect to the Borel field $\mathfrak{F}$ as the (random) set $$M\left\{{x_n|\mathfrak{F}}\right\}=\mathop\cup\limits_{y\in D}\left\{{z:d\left({z,y}\right)\leq{\mathbf E}\left({d\left({x_n,y}\right)|\mathfrak{F}}\right)}\right\},$$ where $d(\cdot,\cdot)$ is the metric and $D$ is a countable dense subset of $X$. Let $\mathfrak{F}_n$ be an increasing sequence of Borel fields, such that $x_n$ is $\mathfrak{F}_n$-measurable. The process $x_n$ is called a (generalized) martingale if $x_n\in M\{x_{n+1}| \mathfrak{F}_n\}$ with probability one.
@article{TVP_1962_7_1_a4,
     author = {V. E. Bene\v{s}},
     title = {Martingales on {Metric} {Spaces}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {82--83},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a4/}
}
TY  - JOUR
AU  - V. E. Beneš
TI  - Martingales on Metric Spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 82
EP  - 83
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a4/
LA  - en
ID  - TVP_1962_7_1_a4
ER  - 
%0 Journal Article
%A V. E. Beneš
%T Martingales on Metric Spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 82-83
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a4/
%G en
%F TVP_1962_7_1_a4
V. E. Beneš. Martingales on Metric Spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 1, pp. 82-83. http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a4/