On Asymptotically-Continuous Stochastic Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 1, pp. 61-81
Voir la notice de l'article provenant de la source Math-Net.Ru
An asymptotically continuous probability process is a single-parameter family of Markov processes, which obey Kolmogorov’s equation with a certain correction. This correction can be made infinitely small as the parameter of the family tends to zero. The process may not exist for a zero value of the parameter. Concrete examples of such processes are developed.
@article{TVP_1962_7_1_a3,
author = {V. N. Klimov},
title = {On {Asymptotically-Continuous} {Stochastic} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {61--81},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {1962},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a3/}
}
V. N. Klimov. On Asymptotically-Continuous Stochastic Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 1, pp. 61-81. http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a3/