Tables for the Calculation of $\mathrm B$- and $Z$-Distribution Functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 446-455
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Tables for the calculation of $\mathrm B$ and $Z$-distribution functions $I_x(p,q)$ and $F_{2p,2q}(z)$ are given. The published tables can be used as a certain supplement to Karl Pearson's “Tables of the Incomplete Beta-function”, Biometric Laboratory, London (1934), and permit the calculation of $I_x(p,q)$ and $F_{2p,2q}(z)$ for $q\geq50$ and $p\leq q$. The error of calculation is not higher than $5\cdot10^{-5}$ (for the case $q \geq160$ the error does not exceed $5\cdot10^{-6}$).
The paper gives regions of the parameters $p$ and $q$, where Tables I, II and [3] can be used for the calculation of $I_x(p,q)$.
For example let us obtain $I_{0.3}(28;73)$ and $I_{0.3}(16;85)$. The point $(p,q)$ in the first case belongs to region I and for this reason we shall use Table I. With the help of (2) and (3) $$w^2=\frac1{p}+\frac1{q}=0.035714+0.13699=0.049413,\,w = 0.222290,\\v=\frac1{w}\left(\frac1{p}-\frac1{q}\right)=\frac{0.035714- 0.13699}{0.222290}=0.09904,\\u=\frac1{w}\lg\frac{qx}{p(1 - x)}=\frac{\lg219-\lg196}{0.43429\cdot 0.22229}=\frac{2.34044-2.29226}{0.09654}=0.49917.\\$$ Then: 
from tables [1] we have $\Phi(u)=0.69117$, and 
from Table I: $\varphi _1(u,v)=0.01304,\varphi _2(u,v)=-0.01140$. 
Using formula (1) we finally obtain $$I_{0.3}(28;73)=\Phi(u)+\varphi _1(u,v)+w^2(u,v)=\\=0.69117+0.01304-0.04941\cdot0.01140=0.70365.$$ The exact value of $I_{0.3}(28;73)$ to five decimal places is 0.70364 (f. [6]).
In the second example the parametric point $(p,q)$ is in the region II. That is why we shall use Table II for obtaining $I_{0.3}(16;85)$. With the help of (7) $$2q+p-1=185\,{\text{ and }}y=\frac{x(2q+p-1)}{2-x}=\frac{0.3\cdot185}{1.7}=32.647.$$ Then by virtue of [4] and II, $I(y,p)=0.99954$ and $\gamma(y,p)=11$. Formula (6) gives the final value $$I_{0.3}(16;85)=I(y,p)+\frac{\gamma (y,p)}{6(2q+p-1)^2}=0.99954+\frac{11}{6(185)^2}=0.99959,$$ the exact value of $I_{0.3}(16;85)$ to five decimal places is equal to 0.99959.
			
            
            
            
          
        
      @article{TVP_1961_6_4_a6,
     author = {L. N. Bol'shev and B. V. Gladkov and M. V. \v{S}\v{c}eglova},
     title = {Tables for the {Calculation} of $\mathrm B$- and $Z${-Distribution} {Functions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {446--455},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a6/}
}
                      
                      
                    TY - JOUR AU - L. N. Bol'shev AU - B. V. Gladkov AU - M. V. Ščeglova TI - Tables for the Calculation of $\mathrm B$- and $Z$-Distribution Functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1961 SP - 446 EP - 455 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a6/ LA - ru ID - TVP_1961_6_4_a6 ER -
%0 Journal Article %A L. N. Bol'shev %A B. V. Gladkov %A M. V. Ščeglova %T Tables for the Calculation of $\mathrm B$- and $Z$-Distribution Functions %J Teoriâ veroâtnostej i ee primeneniâ %D 1961 %P 446-455 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a6/ %G ru %F TVP_1961_6_4_a6
L. N. Bol'shev; B. V. Gladkov; M. V. Ščeglova. Tables for the Calculation of $\mathrm B$- and $Z$-Distribution Functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 446-455. http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a6/
