Game-Type Random Walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 426-429

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a random walk in a convex set of Euclidean space ruled by two opponents. They may as usual independently choose a row and a column of the matrix of given random vectors. The surface of this set absorbs a moving point, and the payoff is defined in absorbation points. The determinateness of such games is proved with uniqueness theorems for Bellman-type functional equations under a somewhat artificial condition (cf. (66)). For the one-dimensional case (which is a generalization of Bellman–Milnor–Shapley’s “games of survival”) a more explicit analysis is given. Absorbation time is also considered as a payoff function both in one and multi-dimensional cases.
@article{TVP_1961_6_4_a3,
     author = {J. V. Romanovsky},
     title = {Game-Type {Random} {Walks}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {426--429},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a3/}
}
TY  - JOUR
AU  - J. V. Romanovsky
TI  - Game-Type Random Walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 426
EP  - 429
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a3/
LA  - ru
ID  - TVP_1961_6_4_a3
ER  - 
%0 Journal Article
%A J. V. Romanovsky
%T Game-Type Random Walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 426-429
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a3/
%G ru
%F TVP_1961_6_4_a3
J. V. Romanovsky. Game-Type Random Walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 426-429. http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a3/