On the Mean Number of Crossings of a Level by a Stationary Gaussian Process
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 474-478

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$ be a stationary Gaussian process and $N_\xi (u)$ denote the number of solutions of $\xi(t)=u, 0\ne t\ne1$. We prove the well-known formula for $\mathbf M_\xi(u)$ under conditions that are very close to the necessary ones.
@article{TVP_1961_6_4_a11,
     author = {E. V. Bulinskaya},
     title = {On the {Mean} {Number} of {Crossings} of a {Level} by a {Stationary} {Gaussian} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {474--478},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a11/}
}
TY  - JOUR
AU  - E. V. Bulinskaya
TI  - On the Mean Number of Crossings of a Level by a Stationary Gaussian Process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 474
EP  - 478
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a11/
LA  - ru
ID  - TVP_1961_6_4_a11
ER  - 
%0 Journal Article
%A E. V. Bulinskaya
%T On the Mean Number of Crossings of a Level by a Stationary Gaussian Process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 474-478
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a11/
%G ru
%F TVP_1961_6_4_a11
E. V. Bulinskaya. On the Mean Number of Crossings of a Level by a Stationary Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 474-478. http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a11/