On the Mean Number of Crossings of a Level by a Stationary Gaussian Process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 474-478
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi(t)$ be a stationary Gaussian process and $N_\xi (u)$ denote the number of solutions of $\xi(t)=u, 0\ne t\ne1$. We prove the well-known formula for $\mathbf M_\xi(u)$ under conditions that are very close to the necessary ones.
			
            
            
            
          
        
      @article{TVP_1961_6_4_a11,
     author = {E. V. Bulinskaya},
     title = {On the {Mean} {Number} of {Crossings} of a {Level} by a {Stationary} {Gaussian} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {474--478},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a11/}
}
                      
                      
                    E. V. Bulinskaya. On the Mean Number of Crossings of a Level by a Stationary Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 474-478. http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a11/
