Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~II
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 377-391
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			“Narrow” Zones of Local and Integral Normal Attraction. Using the notation in Part I of this article, we consider the integral normal attraction zones for the variables $X_i$ and local normal attraction zones for $X_j\in(d)$. The monotone function $h(x)\leq x^{1/2}$ is considered under the supplementary conditions explained in Part I; the “narrow zone theorems” are more conveniently expressed in terms of the condition 
\begin{equation}
\label{eq*}\tag{*} 
E\exp h(|X_j |)\infty.
\end{equation}
The equation 
$$
h(\sqrt n\Lambda(n))=(\Lambda(n))^2
$$ 
determines the monotone function $\Lambda (n)$. The condition \eqref{eq*} is necessary for the zones $[0,\Lambda (n)\rho (n)],[ - \Lambda (n)\rho (n),0]$ to be z.n.a., and for $X_j \in (d)$ to be z.u.l.n.a. It is sufficientt for the zones $[0,\Lambda (n)/\rho(n)], [-\Lambda(n)/\rho (n),0]$ to be z.n.a. and for $X_j\in(d)$ – to be z.u.l.n.a.
			
            
            
            
          
        
      @article{TVP_1961_6_4_a0,
     author = {Yu. V. Linnik},
     title = {Limit {Theorems} for {Sums} of {Independent} {Variables} {Taking} into {Account} {Large} {Deviations.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {377--391},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a0/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Linnik TI - Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1961 SP - 377 EP - 391 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a0/ LA - ru ID - TVP_1961_6_4_a0 ER -
Yu. V. Linnik. Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 377-391. http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a0/
