Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 377-391
Cet article a éte moissonné depuis la source Math-Net.Ru
“Narrow” Zones of Local and Integral Normal Attraction. Using the notation in Part I of this article, we consider the integral normal attraction zones for the variables $X_i$ and local normal attraction zones for $X_j\in(d)$. The monotone function $h(x)\leq x^{1/2}$ is considered under the supplementary conditions explained in Part I; the “narrow zone theorems” are more conveniently expressed in terms of the condition \begin{equation} \label{eq*}\tag{*} E\exp h(|X_j |)<\infty. \end{equation} The equation $$ h(\sqrt n\Lambda(n))=(\Lambda(n))^2 $$ determines the monotone function $\Lambda (n)$. The condition \eqref{eq*} is necessary for the zones $[0,\Lambda (n)\rho (n)],[ - \Lambda (n)\rho (n),0]$ to be z.n.a., and for $X_j \in (d)$ to be z.u.l.n.a. It is sufficientt for the zones $[0,\Lambda (n)/\rho(n)], [-\Lambda(n)/\rho (n),0]$ to be z.n.a. and for $X_j\in(d)$ – to be z.u.l.n.a.
@article{TVP_1961_6_4_a0,
author = {Yu. V. Linnik},
title = {Limit {Theorems} for {Sums} of {Independent} {Variables} {Taking} into {Account} {Large} {Deviations.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {377--391},
year = {1961},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a0/}
}
Yu. V. Linnik. Limit Theorems for Sums of Independent Variables Taking into Account Large Deviations. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 4, pp. 377-391. http://geodesic.mathdoc.fr/item/TVP_1961_6_4_a0/