On the Asymptotic Behavior of a Class of Infinitely Divisible Laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 330-334
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The parameters $\gamma,\sigma^2$ and the function $H(u)$ give in P. Levy's formula (1) a certain infinitely divisible law. The class $\mathfrak{H}^\beta$ forms those functions $H(u)$, which for large positive u can be represented in the form $H(u)=u^{-\beta}h(u)$, where $\beta\geq0$ and $h(ku)\sim h(u)$ when $u\to\infty$ for any constant $k > 0$.
Theorem 1 proves that for distribution functions of infinitely divisible laws $G(x,\gamma,\sigma^2,H)$, whose function $H$ belongs to one of the $\mathfrak{H}^\beta$, the following asymptotic representation holds true: 
$$1-G(x,\gamma,\sigma^2,H)\sim-H(x).$$ In Theorem 2 for infinitely divisible laws $\{G_\alpha\}$ of a more restricted one-parameter family $\mathfrak{A}$ than considered in Theorem 1 ($\mathfrak{A}$ is defined in Section 7) the weak and uniform convergence of the functions $G_\alpha(x^{1/\alpha} )$ to the universal law $V(x)$ is proved.
			
            
            
            
          
        
      @article{TVP_1961_6_3_a6,
     author = {V. M. Zolotarev},
     title = {On the {Asymptotic} {Behavior} of a {Class} of {Infinitely} {Divisible} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {330--334},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a6/}
}
                      
                      
                    V. M. Zolotarev. On the Asymptotic Behavior of a Class of Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 330-334. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a6/
