Analysis of Some Limit Theorems for Large Deviations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 327-329
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The asymptotic formulae obtained in [2] are examined. The term $\lambda_0[r(\alpha)]/r^\alpha(\alpha)$ is studied as a function of $\alpha$ and it is established that max $\lambda_0[r(\alpha)]/r^\alpha(\alpha)$, with probabilities $p_{ik}$ fixed, does not depend on the values of the random variables.
			
            
            
            
          
        
      @article{TVP_1961_6_3_a5,
     author = {I. S. Volkov},
     title = {Analysis of {Some} {Limit} {Theorems} for {Large} {Deviations}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {327--329},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/}
}
                      
                      
                    I. S. Volkov. Analysis of Some Limit Theorems for Large Deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 327-329. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/
