Analysis of Some Limit Theorems for Large Deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 327-329

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic formulae obtained in [2] are examined. The term $\lambda_0[r(\alpha)]/r^\alpha(\alpha)$ is studied as a function of $\alpha$ and it is established that max $\lambda_0[r(\alpha)]/r^\alpha(\alpha)$, with probabilities $p_{ik}$ fixed, does not depend on the values of the random variables.
@article{TVP_1961_6_3_a5,
     author = {I. S. Volkov},
     title = {Analysis of {Some} {Limit} {Theorems} for {Large} {Deviations}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {327--329},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/}
}
TY  - JOUR
AU  - I. S. Volkov
TI  - Analysis of Some Limit Theorems for Large Deviations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 327
EP  - 329
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/
LA  - ru
ID  - TVP_1961_6_3_a5
ER  - 
%0 Journal Article
%A I. S. Volkov
%T Analysis of Some Limit Theorems for Large Deviations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 327-329
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/
%G ru
%F TVP_1961_6_3_a5
I. S. Volkov. Analysis of Some Limit Theorems for Large Deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 327-329. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/