Analysis of Some Limit Theorems for Large Deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 327-329
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotic formulae obtained in [2] are examined. The term $\lambda_0[r(\alpha)]/r^\alpha(\alpha)$ is studied as a function of $\alpha$ and it is established that max $\lambda_0[r(\alpha)]/r^\alpha(\alpha)$, with probabilities $p_{ik}$ fixed, does not depend on the values of the random variables.
@article{TVP_1961_6_3_a5,
author = {I. S. Volkov},
title = {Analysis of {Some} {Limit} {Theorems} for {Large} {Deviations}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {327--329},
year = {1961},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/}
}
I. S. Volkov. Analysis of Some Limit Theorems for Large Deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 327-329. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a5/