On the Entropy of an Automorphism of a Compact Commutative Group
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 351-352

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the proof of the following theorem: every ergodic automorphism of a non trivial compact Abelian group has a positive entropy.
@article{TVP_1961_6_3_a10,
     author = {V. A. Rokhlin},
     title = {On the {Entropy} of an {Automorphism} of a {Compact} {Commutative} {Group}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {351--352},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a10/}
}
TY  - JOUR
AU  - V. A. Rokhlin
TI  - On the Entropy of an Automorphism of a Compact Commutative Group
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 351
EP  - 352
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a10/
LA  - ru
ID  - TVP_1961_6_3_a10
ER  - 
%0 Journal Article
%A V. A. Rokhlin
%T On the Entropy of an Automorphism of a Compact Commutative Group
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 351-352
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a10/
%G ru
%F TVP_1961_6_3_a10
V. A. Rokhlin. On the Entropy of an Automorphism of a Compact Commutative Group. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 351-352. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a10/