On Approximations of Distribution Functions of Sums by Infinitely Divisible Laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 257-275
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathfrak{R}(l)$ be a set of distribution functions of random variables $\zeta$ such that $|\zeta|$, $\mathfrak{G}$ a set of infinitely divisible laws and $\xi_1,\xi_2,\dots,\xi_n$ a sequence of independent identically distributed random variables. We put $$F(x)=\mathbf P\left\{\xi_j\right\},F^n(x)=\mathbf P\left\{{\xi_1 +\cdots+\xi_n x}\right\},\\\rho(F,\mathfrak G)=\inf\limits_{G\in\mathfrak G}\sup\limits_x|F(x)-G(x)|$$ and 
$$\psi_1(n)=\sup\limits_F\rho(F^n,\mathfrak G),\quad\psi(n,l)=\inf\limits_{F\in\mathfrak N(l)}\rho(F^n,\mathfrak G).$$  Then, for $n\to\infty$ 1. $n^{-2/3}(\ln n)^{- 3/2}u(n)=o(\psi _1 (n))$; 
2. $n^{- k+1}(\ln n)^{-2k-1/2}u(n)=o(\psi(n,l))\,{\text{when}}\,l  L_{2k}$; 
3. $\psi (n,l)u(n)=o(n^{- k} )$ when $l> L_{2k}$, 
where $1=L_1= L_2= L_3$ are absolute constants defined in §1, $u(n)\to0,n\to\infty $ and $x=o(y)$ are equal $\bigl|\frac{x}{y}\bigr|\to0$, $n\to\infty$.
The first equality is an improvement of Prokhorov’s estimate [2]: $$\psi_1(n){(n\ln n)}^{-1}.$$
            
            
            
          
        
      @article{TVP_1961_6_3_a0,
     author = {L. D. Meshalkin},
     title = {On {Approximations} of {Distribution} {Functions} of {Sums} by {Infinitely} {Divisible} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {257--275},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a0/}
}
                      
                      
                    TY - JOUR AU - L. D. Meshalkin TI - On Approximations of Distribution Functions of Sums by Infinitely Divisible Laws JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1961 SP - 257 EP - 275 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a0/ LA - ru ID - TVP_1961_6_3_a0 ER -
L. D. Meshalkin. On Approximations of Distribution Functions of Sums by Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 257-275. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a0/
