On Approximations of Distribution Functions of Sums by Infinitely Divisible Laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 257-275
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathfrak{R}(l)$ be a set of distribution functions of random variables $\zeta$ such that $|\zeta|, $\mathfrak{G}$ a set of infinitely divisible laws and $\xi_1,\xi_2,\dots,\xi_n$ a sequence of independent identically distributed random variables. We put $$F(x)=\mathbf P\left\{\xi_j<\right\},F^n(x)=\mathbf P\left\{{\xi_1 +\cdots+\xi_n< x}\right\},\\\rho(F,\mathfrak G)=\inf\limits_{G\in\mathfrak G}\sup\limits_x|F(x)-G(x)|$$ and $$\psi_1(n)=\sup\limits_F\rho(F^n,\mathfrak G),\quad\psi(n,l)=\inf\limits_{F\in\mathfrak N(l)}\rho(F^n,\mathfrak G).$$ Then, for $n\to\infty$ 1. $n^{-2/3}(\ln n)^{- 3/2}u(n)=o(\psi _1 (n))$; 2. $n^{- k+1}(\ln n)^{-2k-1/2}u(n)=o(\psi(n,l))\,{\text{when}}\,l < L_{2k}$; 3. $\psi (n,l)u(n)=o(n^{- k} )$ when $l> L_{2k}$, where $1=L_1= L_2= L_3 are absolute constants defined in §1, $u(n)\to0,n\to\infty $ and $x=o(y)$ are equal $\bigl|\frac{x}{y}\bigr|\to0$, $n\to\infty$. The first equality is an improvement of Prokhorov’s estimate [2]: $$\psi_1(n)<C_1{(n\ln n)}^{-1}.$$
@article{TVP_1961_6_3_a0,
author = {L. D. Meshalkin},
title = {On {Approximations} of {Distribution} {Functions} of {Sums} by {Infinitely} {Divisible} {Laws}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {257--275},
year = {1961},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a0/}
}
L. D. Meshalkin. On Approximations of Distribution Functions of Sums by Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 3, pp. 257-275. http://geodesic.mathdoc.fr/item/TVP_1961_6_3_a0/