Sufficient Statistics of Stationary Gaussian Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 2, pp. 216-218
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that for a stationary Gaussian process with spectral density (1) the number of sufficient statistics is 
$(p+1)(p+2)/2$. A simple example shows that in the general case the number of sufficient statistics increases with the number of observations.
			
            
            
            
          
        
      @article{TVP_1961_6_2_a5,
     author = {M. Arat\'o},
     title = {Sufficient {Statistics} of {Stationary} {Gaussian} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {216--218},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a5/}
}
                      
                      
                    M. Arató. Sufficient Statistics of Stationary Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 2, pp. 216-218. http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a5/
