Sufficient Statistics of Stationary Gaussian Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 2, pp. 216-218

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for a stationary Gaussian process with spectral density (1) the number of sufficient statistics is $(p+1)(p+2)/2$. A simple example shows that in the general case the number of sufficient statistics increases with the number of observations.
@article{TVP_1961_6_2_a5,
     author = {M. Arat\'o},
     title = {Sufficient {Statistics} of {Stationary} {Gaussian} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {216--218},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a5/}
}
TY  - JOUR
AU  - M. Arató
TI  - Sufficient Statistics of Stationary Gaussian Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 216
EP  - 218
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a5/
LA  - ru
ID  - TVP_1961_6_2_a5
ER  - 
%0 Journal Article
%A M. Arató
%T Sufficient Statistics of Stationary Gaussian Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 216-218
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a5/
%G ru
%F TVP_1961_6_2_a5
M. Arató. Sufficient Statistics of Stationary Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 2, pp. 216-218. http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a5/