Estimating the Probability Density for Random Processes in Systems
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 2, pp. 234-242

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of stochastic Ito differential equations is dealt with in this paper: $$dy_i=F(y_1,\dots,y_n ,t)\,dt+\sum\limits_{j=1}^n{a_{ij}\,d\zeta_j (t),}$$ $i=1,2,\dots n$, where ${\zeta_j (t)}$ are independent Wiener processes; or, $$\frac{dy_i }{dt}=F_i(y_1,\dots,y_n ,t)+\sum\limits_{j=1}^n{a_{ij}\zeta_j(t),}$$ where ${\zeta_j (t)}$ are Gaussian “white noise” processes. The functions $F_i(y_1,\dots,y_n )$ are piecewise-linear, and $a_{ij}$ are piecewise-constant. The problem of estimating the probability density for Markov random processes $(y_1(t),\dots,y_n (t))$ is reduced to the solution of a system of Volterra linear integral equations of second kind.
@article{TVP_1961_6_2_a10,
     author = {\`E. M. Khazen},
     title = {Estimating the {Probability} {Density} for {Random} {Processes} in {Systems}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {234--242},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a10/}
}
TY  - JOUR
AU  - È. M. Khazen
TI  - Estimating the Probability Density for Random Processes in Systems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 234
EP  - 242
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a10/
LA  - ru
ID  - TVP_1961_6_2_a10
ER  - 
%0 Journal Article
%A È. M. Khazen
%T Estimating the Probability Density for Random Processes in Systems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 234-242
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a10/
%G ru
%F TVP_1961_6_2_a10
È. M. Khazen. Estimating the Probability Density for Random Processes in Systems. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 2, pp. 234-242. http://geodesic.mathdoc.fr/item/TVP_1961_6_2_a10/