On the Dispersion of Time-Dependent Means of a Stationary Stochastic Process
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 93-101

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$ be a stationary process in the wide sense with discrete (continuous) time $\xi(t)=0$ $$\zeta_p=\sum\limits_{t=0}^{p-1}{\xi(t)}\,\left({\zeta_p=\int_0^p{\xi(t)\,dt}}\right),\\ b_p=\mathbf M|{\xi_p} |^2.$$ The behaviour of $b_p$ for $p\to\infty$ is dealt with in the paper.
@article{TVP_1961_6_1_a6,
     author = {V. P. Leonov},
     title = {On the {Dispersion} of {Time-Dependent} {Means} of a {Stationary} {Stochastic} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a6/}
}
TY  - JOUR
AU  - V. P. Leonov
TI  - On the Dispersion of Time-Dependent Means of a Stationary Stochastic Process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 93
EP  - 101
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a6/
LA  - ru
ID  - TVP_1961_6_1_a6
ER  - 
%0 Journal Article
%A V. P. Leonov
%T On the Dispersion of Time-Dependent Means of a Stationary Stochastic Process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 93-101
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a6/
%G ru
%F TVP_1961_6_1_a6
V. P. Leonov. On the Dispersion of Time-Dependent Means of a Stationary Stochastic Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a6/