Some Results Associated with Bochner's Theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 87-93
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{ P_\alpha\}$ be a family of probability distributions in a separable Hilbert space (or more generally, in a space $X=Y^*$ conjugate to a countably-Hilbert space $Y$) and let $\{\chi_\alpha\}$ be the family of corresponding characteristic functionals. We investigate whether or not there exists a locally convex topology $\mathscr{T}$ with the following property: The relative compactness of $\{{P_\alpha}\}$ is equivalent to uniform (with respect to $\alpha$) continuity of $\{\chi_\alpha\}$. We prove that there is no such topology except for the case of the countably-Hilbert nuclear space $Y$.
@article{TVP_1961_6_1_a5,
author = {Yu. V. Prokhorov and V. V. Sazonov},
title = {Some {Results} {Associated} with {Bochner's} {Theorem}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {87--93},
year = {1961},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a5/}
}
Yu. V. Prokhorov; V. V. Sazonov. Some Results Associated with Bochner's Theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a5/