Some Results Associated with Bochner's Theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 87-93
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{ P_\alpha\}$ be a family of probability distributions in a separable Hilbert space (or more generally, in a space $X=Y^*$ conjugate to a countably-Hilbert space $Y$) and let $\{\chi_\alpha\}$ be the family of corresponding characteristic functionals. We investigate whether or not there exists a locally convex topology $\mathscr{T}$ with the following property:
The relative compactness of $\{{P_\alpha}\}$ is equivalent to uniform (with respect to $\alpha$) continuity of 
$\{\chi_\alpha\}$.
We prove that there is no such topology except for the case of the countably-Hilbert nuclear space $Y$.
			
            
            
            
          
        
      @article{TVP_1961_6_1_a5,
     author = {Yu. V. Prokhorov and V. V. Sazonov},
     title = {Some {Results} {Associated} with {Bochner's} {Theorem}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a5/}
}
                      
                      
                    Yu. V. Prokhorov; V. V. Sazonov. Some Results Associated with Bochner's Theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a5/
