Construction of Non-Homogeneous Markov Processes by Means of a Random Substitution of Time
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 47-56

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a continuous single-dimensional Markov process $y(t)$ with wide restrictions can be obtained from the Wiener process $x(t)$ in the following form: $y(t)=\psi[x(\tau_t),t]$, where $\psi(x,t)$ is a continuous function, monotonic in $x$ for a given $t$, and $\tau _t $ is a non-decreasing random function of $t$ (Theorem 1). Conditions are given which should be met by the Markov process $x(t)$ in abstract space and the random function $\tau_t$ so that the process $y(t)=x(\tau_t)$ will also be a Markov process (Theorem 2).
@article{TVP_1961_6_1_a2,
     author = {V. A. Volkonskii},
     title = {Construction of {Non-Homogeneous} {Markov} {Processes} by {Means} of a {Random} {Substitution} of {Time}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a2/}
}
TY  - JOUR
AU  - V. A. Volkonskii
TI  - Construction of Non-Homogeneous Markov Processes by Means of a Random Substitution of Time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 47
EP  - 56
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a2/
LA  - ru
ID  - TVP_1961_6_1_a2
ER  - 
%0 Journal Article
%A V. A. Volkonskii
%T Construction of Non-Homogeneous Markov Processes by Means of a Random Substitution of Time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 47-56
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a2/
%G ru
%F TVP_1961_6_1_a2
V. A. Volkonskii. Construction of Non-Homogeneous Markov Processes by Means of a Random Substitution of Time. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a2/