Nomograms for Probability Functions $\chi^2$
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 138-140

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a nomogram is constructed for the function $$P(\chi^2,n)=\frac1{2^{(n-2)/2}\Gamma(n/2)}\int_\chi ^\infty z^{n-1}e^{-z^2/2}\,dz$$ of the variables, $P,\chi^2,n$ lying within the following limits: $$1\leq n\leq110,\quad1\leq\chi^2\leq150,\quad0,001\leq P\leq0,999.$$ The relative error in the middle part of the answer scale of $P$ does not exceed $3\%$ for $0,1\leq P\leq0,9$ and $10\%$ at the ends of this scale.
@article{TVP_1961_6_1_a16,
     author = {S. V. Smirnov and M. K. Potapov},
     title = {Nomograms for {Probability} {Functions} $\chi^2$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {138--140},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a16/}
}
TY  - JOUR
AU  - S. V. Smirnov
AU  - M. K. Potapov
TI  - Nomograms for Probability Functions $\chi^2$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 138
EP  - 140
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a16/
LA  - ru
ID  - TVP_1961_6_1_a16
ER  - 
%0 Journal Article
%A S. V. Smirnov
%A M. K. Potapov
%T Nomograms for Probability Functions $\chi^2$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 138-140
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a16/
%G ru
%F TVP_1961_6_1_a16
S. V. Smirnov; M. K. Potapov. Nomograms for Probability Functions $\chi^2$. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 138-140. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a16/