Nomograms for Probability Functions $\chi^2$
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 138-140
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper a nomogram is constructed for the function $$P(\chi^2,n)=\frac1{2^{(n-2)/2}\Gamma(n/2)}\int_\chi ^\infty z^{n-1}e^{-z^2/2}\,dz$$ of the variables, $P,\chi^2,n$ lying within the following limits: $$1\leq n\leq110,\quad1\leq\chi^2\leq150,\quad0,001\leq P\leq0,999.$$ The relative error in the middle part of the answer scale of $P$ does not exceed $3\%$ for $0,1\leq P\leq0,9$ and $10\%$ at the ends of this scale.
			
            
            
            
          
        
      @article{TVP_1961_6_1_a16,
     author = {S. V. Smirnov and M. K. Potapov},
     title = {Nomograms for {Probability} {Functions} $\chi^2$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {138--140},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a16/}
}
                      
                      
                    S. V. Smirnov; M. K. Potapov. Nomograms for Probability Functions $\chi^2$. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 138-140. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a16/
