On Limit Distributions of Sums of Conditionally Independent Random Variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 119-125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper deals with limit distributions for sums $\eta_n$ which become independent when a certain path $x_n$, 
$n=0,1,2,\dots$, of a Markov chain is defined. The dependence between $\{\eta_n\}$ and $\{X_n\}$ is expressed more exactly by (1).
Let $X_s$ be the path of a continuous Markov process. Furthermore, the study of the limit distributions of 
$\zeta(t)=\int_0^t f(X_s)\,ds$ at $t\to\infty$ can be reduced to the study of limit distributions of sums $\eta _n$. This reduction is illustrated for the case where $X_s$ is a one-dimensional diffusion process. The limit distribution for 
$\zeta(t)$ coincides with distributions obtained in [12]. The sufficient conditions for convergence to each distribution are also given (Theorems 2 and 3).
			
            
            
            
          
        
      @article{TVP_1961_6_1_a13,
     author = {R. Z. Khas'minskii},
     title = {On {Limit} {Distributions} of {Sums} of {Conditionally} {Independent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a13/}
}
                      
                      
                    TY - JOUR AU - R. Z. Khas'minskii TI - On Limit Distributions of Sums of Conditionally Independent Random Variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1961 SP - 119 EP - 125 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a13/ LA - ru ID - TVP_1961_6_1_a13 ER -
R. Z. Khas'minskii. On Limit Distributions of Sums of Conditionally Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 119-125. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a13/
