Continuation of Conditional Probabilities
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 116-118

Voir la notice de l'article provenant de la source Math-Net.Ru

A probability measure $\mu$ on a finite set $R$ is called interior if $\mu(a)>0$ for any $a\in R$. The set of all interior measures on $R$ is denoted by $W(R)$. Theorem. There exists a mapping $\varphi$ of $W(R)$ into Euclidean space $E$ of suitable dimension with two properties: 1. All conditional probabilities $$\mu(a|A)=\frac{\mu (a)}{\mu (A)},\quad a\in A\subset R,$$ are uniformly continuous functions $\varphi(\mu)$ on the whole set $\varphi W(R)$ in the sense of the metric on $E$. 2. The closure of $\varphi W(R)$ in $E$ is homeomorphic to the closed simplex of suitable dimension.
@article{TVP_1961_6_1_a12,
     author = {N. N. Vorob'ev and D. K. Faddeev},
     title = {Continuation of {Conditional} {Probabilities}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {116--118},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a12/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
AU  - D. K. Faddeev
TI  - Continuation of Conditional Probabilities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1961
SP  - 116
EP  - 118
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a12/
LA  - ru
ID  - TVP_1961_6_1_a12
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%A D. K. Faddeev
%T Continuation of Conditional Probabilities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1961
%P 116-118
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a12/
%G ru
%F TVP_1961_6_1_a12
N. N. Vorob'ev; D. K. Faddeev. Continuation of Conditional Probabilities. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 116-118. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a12/