Local Theorems and Moments for Maxima of Sums of Bounded Lattice Components
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 108-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_1,\xi_2,\dots$ – independent lattice random variables; $|\xi_k|$, $\bar s_n=\max_{1\leq\nu\leq n}(0,\xi _1+,\xi _2+\cdots+\xi _\nu)$. The formulas for $\mathbf P({s_n=x})$ and for the first moments $\bar s_n$ are obtained in the note.
			
            
            
            
          
        
      @article{TVP_1961_6_1_a10,
     author = {A. A. Borovkov},
     title = {Local {Theorems} and {Moments} for {Maxima} of {Sums} of {Bounded} {Lattice} {Components}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {108--110},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a10/}
}
                      
                      
                    A. A. Borovkov. Local Theorems and Moments for Maxima of Sums of Bounded Lattice Components. Teoriâ veroâtnostej i ee primeneniâ, Tome 6 (1961) no. 1, pp. 108-110. http://geodesic.mathdoc.fr/item/TVP_1961_6_1_a10/
