On Probabilities for Extreme Values of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 3, pp. 338-352

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper examines the probabilities for values of sums of random variables defined on a homogeneous Markov chain with a finite number of states. These values are such that their deviations from the smallest or largest possible value for each instant of time "$n$" are bounded in their sum. By separating traj ectorits in the random walk into classes defined by a proper method, regular components are picked out from the probabilities under consideration and exact and asymptotic formulas are found (for $n\to\infty$) for each of these components.
@article{TVP_1960_5_3_a5,
     author = {I. S. Volkov},
     title = {On {Probabilities} for {Extreme} {Values} of {Sums} of {Random} {Variables} {Defined} on a {Homogeneous} {Markov} {Chain} with a {Finite} {Number} of {States}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {338--352},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a5/}
}
TY  - JOUR
AU  - I. S. Volkov
TI  - On Probabilities for Extreme Values of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1960
SP  - 338
EP  - 352
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a5/
LA  - ru
ID  - TVP_1960_5_3_a5
ER  - 
%0 Journal Article
%A I. S. Volkov
%T On Probabilities for Extreme Values of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1960
%P 338-352
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a5/
%G ru
%F TVP_1960_5_3_a5
I. S. Volkov. On Probabilities for Extreme Values of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 3, pp. 338-352. http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a5/