Some Problems in the Spectral Theory of Higher-Order Moments.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 3, pp. 293-313

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates different classes of stochastic processes (classes $\mathbf T^{(k)}$, $\mathbf S^{(k)}$,$\mathbf\Phi^{(k)}$, $\mathbf\Delta^{(k)}$, which are defined in the introduction) by examining their high-order spectral moments and semi-invariants. The paper considers linear (see Theorem 1 for example) and non-linear transformations of stochastic processes. A formula for determining spectral semi-invariants of the process $\eta(t)$ on the basis of the spectral semi-invariants of the process $\xi(t)$ is given for a large group of non-linear transformations $\eta=N\xi$ of class $\mathbf\Phi^{(k)}$ processes (Theorem 2). It is shown that the class $\mathbf\Delta^{(\infty)}$ is invariant with respect to a large group of non-linear transformations (Theorem 3). Theorem 4 shows that the process $\eta(t)=f(\xi(t-\tau))$ belongs to the class $\mathbf\Delta^{(2)}$, where $\xi(t)\in\mathbf\Delta^{(\infty)}$ and the functional $f(x(t))$, in the space of trajectories $x(t)$ of the process $\xi (t)$, belongs to a mean square closure of the family of polynomials (3.17).
@article{TVP_1960_5_3_a1,
     author = {A. N. Shiryaev},
     title = {Some {Problems} in the {Spectral} {Theory} of {Higher-Order} {Moments.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {293--313},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a1/}
}
TY  - JOUR
AU  - A. N. Shiryaev
TI  - Some Problems in the Spectral Theory of Higher-Order Moments.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1960
SP  - 293
EP  - 313
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a1/
LA  - ru
ID  - TVP_1960_5_3_a1
ER  - 
%0 Journal Article
%A A. N. Shiryaev
%T Some Problems in the Spectral Theory of Higher-Order Moments.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1960
%P 293-313
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a1/
%G ru
%F TVP_1960_5_3_a1
A. N. Shiryaev. Some Problems in the Spectral Theory of Higher-Order Moments.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 3, pp. 293-313. http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a1/