Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 3, pp. 265-292
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of multivariate stationary random processes $\xi(t)=\{\xi_1(t),\dots,\xi_k(t)\}$ having the nonsingular spectral density matrix $||f_{jk}(\lambda)||$, where all $f_{jk}(\lambda)$ are rational functions of $\lambda$. The following linear approximation problems for the processes are studied: 1) the simplest extrapolation problem of determining a linear least-square estimate of $\xi_k(t+\tau),\tau>0$, by known values of $\xi_j(t'),j=1, \dots,n,t'\leq t$; 2) the finite interval extrapolation problem of a linear least-square estimation of $\xi_k(t+\tau)$ by $\xi_j(t'),j=1,\dots,n,t-T\leq t'\leq t$; 3) the interpolation problem of a least-square estimation of $\xi_k(t+\tau),0 \tau$ by $\xi_j(t'),j=1,\dots,n,t'\leq t$ or $t'\geq t+T$; 4) the filtration problem of a least-square estimation of the value of some random variable $\Xi$ (such that the functions $f_{\Xi k}(\lambda),k=1,\dots,n$, from equations
(3.1)–(3.2) have the form (3.4), where all $q_{rk}(\lambda)$ are rational) by the values of
$\xi _j(t'),j=1,\dots,n,t'\leq t$ or $t-T\leq t'\leq t$.
In all cases the method used in previous papers [11] and [12] enables the explicit extrapolation, interpolation or filtration formulae to be derived by merely solving the algebraical equation $D(\lambda)=\det||f_{jk}(\lambda)||=0$ and afterwards a simple system of linear algebraical equations. The same method can also be applied to the case when we wish to find a least-square estimate of $\xi_k(t+\tau)$ or $\Xi$ by the values of $\xi_j(t'),j=1,\dots,n$, on any set of closed intervals on the time axis. Some other generalizations of extrapolation, interpolation and filtration problems may be solved by the same method; they are given in the last section of the paper.
@article{TVP_1960_5_3_a0,
author = {A. M. Yaglom},
title = {Effective {Solutions} of {Linear} {Approximation} {Problems} for {Multivariate} {Stationary} {Processes} with a {Rational} {Spectrum}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {265--292},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {1960},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a0/}
}
TY - JOUR AU - A. M. Yaglom TI - Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1960 SP - 265 EP - 292 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a0/ LA - ru ID - TVP_1960_5_3_a0 ER -
%0 Journal Article %A A. M. Yaglom %T Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum %J Teoriâ veroâtnostej i ee primeneniâ %D 1960 %P 265-292 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a0/ %G ru %F TVP_1960_5_3_a0
A. M. Yaglom. Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 3, pp. 265-292. http://geodesic.mathdoc.fr/item/TVP_1960_5_3_a0/